Guided Notes: Graphing Linear Equations

1. SLOPE: rate of _____ of a line

Slope = _____ change

change

- Term Definition Example

 2. Linear Equation An equation that makes a _____ when you graph it

 Y-Intercept Where a line crosses the _____

 Slope-Intercept Form Where "m" is ____ and b is the _____
- 3. The first step in our process is to identify the slope and the y-intercept!

Always write this as a fraction

 $y = mx + b \leftarrow$

Where we start our graph

- 4. Example #1: What is the slope of y = -4x + 1
 - a. $-\frac{4}{1}$

b. $\frac{4}{1}$

 $C_{i} = \frac{1}{i}$

d. $-\frac{1}{1}$

- 5. Example #1: What is the y-intercept of y = -x + 5?
 - a. -1

b. 1

c. 5

- d. -5
- 6. How do we find slope and y-intercept when the equation isn't in slope-intercept (y=mx+b) form?
 - a. Put your equation in slope intercept form by solving for _____
 - b. Find the slope and the y-intercept of the equations below:

-3x

y - 9x = 0.5

7. Example #3: What are the slope and y-intercept of -2y = 6(5 - 3x)?

a.
$$y = 9x - 15$$

b.
$$y = -9x - 15$$

c.
$$y = 15x + 9$$

d.
$$y = -15x - 9$$

- 8. Time to Graph!!!
 - a. Process for graphing a line given an equation:

1. Get equation in slope-intercept (______

2. Identify slope and y-intercept

3. Plot ______on graph

4. From that point, go up/down the numerator of the slope and right/left the denominator and plot point

5. Draw a line ______both points

9. Horizontal and Vertical Lines

a. Remember equations with only _____ will form either a horizontal or vertical line

b. $y = \# \rightarrow$ ______lines

1. Slope = _____

2.Y-intercept = ____

c. $x = \# \rightarrow$ _____ lines

1. Slope = _____

2.x-intercept = ____

10. **Graph:** $y = \frac{1}{5}x + 5$

13. **Graph:**
$$y = -1$$

14. **Graph:** x = 6

