The circumference C of a circle with radius r can be calculated using the formula $C=2\pi r$. Which formula represents r in terms of C?

$$\odot$$
 A. $r=2\pi C$

$$\circ$$
 B. $r=C-2\pi$

$$\circ$$
 C. $oldsymbol{r}=rac{C\pi}{2}$

$$\hat{}$$
 D. $r=rac{C}{2\pi}$

6. A set production designer creates a right circular cylindrical pillar. The designer knows the amount of material used for the surface of the pillar and needs to find the height for a reinforcement rod.

Use $A=(2\pi r)h+\pi r^2$, where r represents the radius, h represents the height of the pillar, and A represents the surface area of the pillar. What is a formula for h in terms of the other variables that can be used to find the height?

$$\circ$$
 A. $h=rac{A-\pi r^2}{2\pi r}$

$$\circ$$
 B. $h=rac{A+\pi r^2}{2\pi r}$

$$\bigcirc$$
 C. $h=rac{A}{3\pi r^2}$

$$\bigcirc$$
 D. $h=rac{A}{2\pi r}-rac{1}{2}$

A circular pool of water is shrinking as it drains. The diagram shows the shrinkage.

A formula for the area, A, of the circular pool is given by the equation $A=\pi(r-3)^2$.

Which is a formula for r?

A.
$$r = \sqrt{\frac{A}{\pi}} - 3$$

C.
$$r = \sqrt{\frac{A}{\pi}} + 3$$

C.
$$r = \sqrt{\frac{A}{\pi}} + 3$$
D. $r = \sqrt{\frac{A}{\pi} - 3}$

The diagram represents a bridge over a river with an opening for boats to pass under the bridge.

The area, A, of the side view is given by $A=18x-0.5\pi r^2$. Which equation, in terms of A and x, represents the radius, r, of the bridge opening?

A.
$$r=\sqrt{rac{18x-A}{2\pi}}$$

B.
$$r = \sqrt{\frac{A-18x}{0.5\pi}}$$

C.
$$r=\sqrt{rac{18x}{0.5\pi}-A}$$

$$\Gamma$$
 D. $r=\sqrt{rac{2(18x-A)}{\pi}}$